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A new hyperbolic area estimate for the level sets of finite Blaschke products is
presented.

The following inversion of the usual Sobolev embedding theorem is proved:

&r&W1
q(D)�Cn &r&Lp(D) , p>2, 1�q=1�p+1�2.

Here r is a rational function of degree n with poles outside D.
This estimate implies a new inverse theorem for rational approximation of

analytic functions with respect to area L p norm. � 1997 Academic Press

INTRODUCTION

In this paper a new approach to the rational function estimates is presented.
We obtain the following hyperbolic area estimate for the level sets of a

Blaschke product B of degree n in the unit disc D:

|
[z : |B(z)|�1�2]

dx dy
(1&|z| )2�32?(n+1). (0.1)

We construct a pseudoanalytic extension for rational functions r of
degree n with poles outside D. A general scheme for the pseudoanalytic
extension of inner functions in D (in Beurling's sense, cf. [7, Sect. 6 of
Chap. 2]) was proposed in [6]. In [2, 6] it was applied to singular inner
functions and some free interpolation problems. Here we apply it to finite
Blaschke products and estimates of rational functions of a given degree.

In particular, this construction, together with (0.1), gives a new simple
proof of the main Bernstein-type inequalities [8, 9] for such functions:

&r&Bs
p(T)�Cns &r&Lq(T) (0.2)

and

&r&Bp
1�p(T)�Cn1�p &r&BMO(T) . (0.3)
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Here the constant C does not depend on n, p>0 and, in the first
inequality,

q�1, s=
1
p

&
1
q

>0.

Bs
p(T) is the usual Besov space on the unit circle T (see Section 1.3 below).
It was proved [3] that such Bernstein-type inequalities imply the corres-

ponding inverse theorems of the rational approximation theory. In our case
they are the well-known theorems of Peller [9] and Pekarskii [8].

The classical inequality (0.2) deals with the L p norm on T. Is it possible
to obtain an analogue of (0.2) in the area metric, that is in the L p(D) norm
instead of the L p(T) norm? In the last section of the paper we prove such
an analogue.

The main Theorem 4 asserts that for a rational function r of degree n
with poles outside the unit disc

\|C"D

| f (z)| p dx dy+
1�p

�Cp n1�2 \|D

|r(z)| p dx dy+
1�p

, (0.4)

where p�2 and

f (z)=
r(z)
B(z)

,

B being the Blaschke product of degree n+2 with the same poles as r itself
and two additional poles at infinity.

The estimate (0.4) allows us to obtain an inversion of the Sobolev
embedding theorem for rational functions of a given degree. It is well-
known that

W 1
q(D)/L p(D), 2<p<�,

1
q

=
1
p

+
1
2

.

Theorem 5 of the paper gives the inverse estimate

&r&W1
q(D)�Cpn &r&Lp(D) (0.5)

for any p>2 and any rational function r of degree n with poles outside the
disc.

Of course, this estimate is a Bernstein-type inequality in the area norm.
Therefore, one can obtain the corresponding inverse approximation
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theorem from it. This inverse theorem is Theorem 6 of the paper. It asserts
that any analytic function f # L p(D) satisfying

:
�

n=1

nq(1�2&1�p)Rn( f )q
Lp(D)<�

belongs to the Besov class B1�q&2�p
q (T). Here p>2, q is any positive number

less than p�2, and Rn( f )Lp(D) stands for the best approximation of f in
L p(D) by rational functions of degree n with poles outside D.

Section 1 is devoted to some necessary preliminary information.
In Section 2 the hyperbolic area estimate (0.1) is proved.
In Section 3 the pseudoanalytic extension construction is presented and

the inequalities (0.2) and (0.3) are proved. The proofs are quite short and
use (0.1) essentially.

Section 4 is devoted to area norm estimates. We prove the main
Theorem 4 (that is, (0.4)) and Theorem 5 (that is, (0.5)). In order to obtain
the corresponding inverse rational approximation result (Theorem 6) we
prove another version of the inverse embedding theorem,

&r&Bs
q(T)�Cn1�2+1�q&1�p &r&Lp(D) ,

where, as before, p>2, 0<q<p�2, and s=1�q&2�p.
Afterwards, Theorem 6 on the rational approximation follows

immediately [3].

1. PRELIMINARIES

1.1. Notation

z=x+iy and `=!+i' are complex variables.
D=[z : |z|<1] is the unit disc, T=[z : |z|=1] is the unit circle.

�
�z�

=
1
2 \

�
�x

+i
�

�y+ .

C and c are constants, not necessarily the same throughout a formula.
The inner Luzin cone 1(ei%) and the outer Luzin cone 1*(ei%) are

defined for any point ei% # T as

1(ei%)=[z # D : |z&ei%|<2(1&|z| )]

and

1*(ei%)=[z : 1�z� # 1(ei%)].
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A Whitney disc is a disc of the form

2=2(z)=[` : |`&z|< 1
2 \(z, T)],

where z � T and

\(z, T)=|1&|z| |

is the distance from z to T.
The cut-off function / is a C�(R)-function such that

0�/�1, /(t)=1, t>1�2, /(t)=0, t<1�4.

1.2. BMO Space
BMO=BMO(T) is the standard space of functions of bounded mean

oscillation on the unit circle [7, Chap. 6] endowed with the norm

& f &BMO=& f &L1(T)+sup
I

1
|I | |I

| f &mI ( f )|,

where sup is taken over all subarcs I/T and mI ( f ) stands for the mean
value of f on I.

BMOA(C"D) is the space of all analytic functions g of the Hardy class
H1(C"D) such that g |T # BMO(T).

The main result of the BMO space theory [7, Chap. 6, Corollary 4.5]
asserts that for any function f # BMO there exists a decomposition

f =v+ g |T almost everywhere on T, (1.1)

where g # BMOA and v is uniformly bounded and such that

&v&L�(T)�C & f &BMO.

1.3. Besov Spaces
One can find the standard definition and discussion of the Besov spaces

Bs
p(T), 0<p<�, s>0, in [4, 5, 11]. In particular, in [5] the following

description of Bs
p in terms of so-called pseudoanalytic extension was

obtained:
Let r be a function, analytic in D and continuous (say) up to the circle

T. Let r~ be a continuous extension of r to the whole plane such that
r~ # C�(C"D). Then for any p>0 and s>0 such that s>1�p&1

&r&B s
p(T)�C1 max

|z| =2
|r~ (z)|+C2 \|1<|z|<2

_(z) p dx dy
( |z|&1) ps+1+

1�p

, (1.2)
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where

_(z)=sup {( |`|&1) } �r~
� �̀ } : |`&z|<1�2( |z|&1)= . (1.3)

It is well-known (see, e.g., [5]) that B1�p
p (T)/BMO(T), and so any

function f # B1�p
p admits a decomposition (1.1). However, more was proved

in this case in [10] (see also [1]):
For any f # B1�p

p there exists a decomposition (1.1) such that both v and
g belong to B1�p

p , and

&v&Bp
1�p(T)+&v&L�(T)+&g |T &Bp

1�p(T)�C & f &Bp
1�p(T) . (1.4)

2. FINITE BLASCHKE PRODUCTS AND THEIR LEVEL SETS

2.1. Definitions

Let

B(z)= `
n

k=1

zk&z
1&z� k z

be a Blaschke product of degree n with respect to the unit disc.
It has zeros zk inside D and poles 1�z� k outside D. On T |B(z)|=1.
Define the level set

E=[z # D : 1
4<|B(z)|< 1

2]

and its reflection with respect of T

E*={z # C"D :
1
z�

# E==[z # C"D : 2<|B(z)|<4].

If B has a zero of order 2 or more at the origin, then the level set E* lies
in the annulus [1<|z|<2].

Let z # E. |B|�1 in D, and so [7, Chap. 1, Sect. 1.1] |B|� 4
5 on the

whole Whitney disc 2(z).

2.2. Estimate of Hyperbolic Area of Level Set

The following equality is well-known; we include its proof for the
reader's sake.
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Lemma.

|
D

|B$(z)| 2 dx dy=?n.

Proof. By the Green formula

|
D

|B$(z)|2 dx dy=|
D

B$(x) B$(z) dx dy=
1
2i |T

B$(z) B(z) dz

=
1
2i |T

B$(z)
B(z)

dz=?n. K

We use this result in the proof of the following estimate.

Theorem 1.

|
D \1&|B(z)|

1&|z| +
2

dx dy�8?(n+1).

Proof. The contribution of the disc [ |z|< 1
2] to the integral is obviously

less than ?. As for the annulus [ 1
2<|z|<1], its contribution in polar coor-

dinates is

|
1

1�2

r
(1&r)2 dr |

2?

0
(1&|B(rei%)| )2 d%

�|
1

1�2

r
(1&r)2 dr |

2?

0
|B(ei%)&B(rei%)|2 d%

�|
2?

0
d% |

1

1�2

r
(1&r)2 dr \|

1

r
|B$(sei%)| ds+

2

By the well-known Hardy inequality [11, Appendix A.4] this is less than

4 |
2?

0
d% |

1

1�2
|B$(sei%)| 2 ds�8 |

D

|B$(z)| 2 dx dy=8?n.

The last step follows from the Lemma. K

The proven theorem leads us to some geometric properties of level sets
of B.
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Corollary 1.

|
E

dx dy
(1&|z| )2�32?(n+1). (2.1)

The estimate (2.1) of the hyperbolic area of E may be written in another
form.

Corollary 2. The level set E may be covered by not more than Cn
Whitney discs, with some absolute constant C.

Proof. By the well-known Whitney construction [11, Chap. 6, Sect. 1]
one can cover the whole D by Whitney discs with bounded multiplicity
of intersections. Each Whitney disc intersecting E contributes a positive
constant to the integral of Theorem 1 (see the last paragraph of Sect. 2.1). K

Consider for any point ei% # T the Luzin cone 1(ei%) and the maximal
function for E

u(ei%)=max { 1
1&|z|

: z # E & 1(ei%)= . (2.2)

Corollary 3.

|
2?

0
u(ei%) d%�Cn

with some absolute constant C.

Proof. Consider the covering of E by Whitney discs from Corollary 2.
Fix a disc 2 and denote by I(2) the set of % such that

max { 1
1&|z|

: z # E & 1(ei%)=
is attained at some point z # 2.

Then E & 1(ei%) is non-empty, and so I(2) is contained in an arc of
length C diam(2). Thus, the contribution of I(2) to � u d% is bounded by
an absolute constant. K

2.3. Pseudoanalytic Extension

The Blaschke product B in D has an analytic extension 1�B(1�z� ) outside
D. However, this extension has poles. Here we construct another extension,
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which is not analytic anymore, but has no singularity in the whole plane.
The new extension is given by the formula

B� (z)=
1

B(1�z� )
/[ |B(1�z� )|], |z|>1. (2.3)

Here / is the cut-off function defined in Section 1.1.
The function B� is not analytic, but it is C� in the whole plane and

|B� |�4 everywhere. The Cauchy�Riemann derivative �B� ��z� is supported on
the set E* and satisfies the estimate

}�B�
�z� }�C

1
|z|&1

, z # E*. (2.4)

Indeed, due to the analyticity of the first factor in (2.3),

} �B�
�z� }= } 1

B(1�z� )
�

�z�
[/[ |B(1�z� )|]] }

�4 } max |/$| } |B$(1�z� )| }
1

|z| 2

�C }
1

1&|1�z� |
}

1
|z| 2�C

1
|z|&1

on E*.

3. EXTENSION OF RATIONAL FUNCTIONS

3.1. Construction

Let r be a rational function of degree n with poles outside D. We con-
struct a pseudoanalytic extension of r to C"D.

Let B be a Blaschke product of degree n+2 with the same poles as r and
two additional poles at infinity. The ratio r�B is analytic in C"D and
vanishes at infinity.

Fix any p, 1�p��.
Let g be any function of the Hardy class H p(C"D). Put f =r& g. Then

the function

h=
f
B

=
r
B

&
g
B

is analytic in C"D and belongs to H p.
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On T

|h|=| f |.

Define now an extension of r to C"D by the formula

r~ =hB� + g. (3.1)

Evidently, r~ is analytic outside the level set E*. The latter lies in the
annulus [1<|z|<2] in our case.

On the set

U=[z : |B(z)|<2], (3.2)

and so in some neighborhood of D� , r~ coincides with r.
On E*, according to (2.4),

} �r~
�z� }= } h(z)

�B�
�z� }�C |h(z)|

1
|z|&1

. (3.3)

In particular, if z belongs to an outer Luzin cone 1*(ei%), then

} �r~
�z� }�Ch*(ei%) u(ei%), (3.4)

where

h*(ei%)=sup [ |h(z)|, : z # 1*(ei%)]

is the non-tangential maximal function for h, and u is defined by (2.2).
On the circle [z : |z|=2]

|r~ |�C(&r&L1(T)+&g&L1(T)),

where C is an absolute constant.

3.2. Application: Bernstein Type Inequalities

The construction of Section 3.1 allows us to give a new proof of the well-
known Bernstein type inequalities for rational functions. These inequalities
were proved first by V. V. Peller [9] in the BMO case and by
A. A. Pekarskii [8] in the Lq case.

Let q�1, p>0, and

s=
1
p

&
1
q

>0.

Consider the Besov class Bs
p(T) (see Sect. 1.3).

357INEQUALITIES FOR RATIONAL FUNCTIONS



File: DISTIL 310410 . By:DS . Date:26:11:97 . Time:15:32 LOP8M. V8.0. Page 01:01
Codes: 2326 Signs: 1139 . Length: 45 pic 0 pts, 190 mm

Theorem 2. For any rational function r of degree n with poles outside D

&r&B s
p(T)�Cns &r&Lq(T) .

Here C is a constant not depending on n.

Proof. Use the extension (3.1) with g=0. This means that |h|=|r| on T.
According to (1.2), it suffices to check that

|
1<|z|<2

_(z) p dx dy
( |z|&1) ps+1�Cn ps &r& p

Lq(T) , (3.5)

where _(z) is defined by (1.3).
Set z=(1+t) ei%, t>0. In our case, due to (3.4), _(z)�Ch*(ei%). In the

domain of integration t>1�u(ei%) by definition (2.2) of u. Hence the above
integral does not exceed

C } |
2?

0
h*(ei%) p d% |

�

1�u(ei%)

dt
t ps+1�C } |

T

h* pu ps.

By the Ho� lder inequality, the maximal theorem, and Corollary 3, the last
integral is less than

\| h*q+
p�q

\| u+
ps

�Cn ps &h& p
Hq(C"D)=Cn ps &r& p

Lq(T) . K

Only finite q occurs in Theorem 2. The following result is its counterpart
for q=�.

Theorem 3. For any rational function r of degree n with poles outside D
and any p>0

&r&B p
1�p(T)�Cn1�p &r&BMO(T) .

Proof. Apply the decomposition (1.1) to r and consider the extension
(3.1) of r with this very g. One obtains, as above,

_(z)�C &h&H �=C & f &L��C &r&BMO .

Therefore, the integral (3.5) (where s=1�p now) does not exceed

C &r& p
BMO |

2?

0
d% |

�

1�u(ei%)

dt
t2�Cn &r& p

BMO(T) . K

358 EVSEY DYN'KIN



File: DISTIL 310411 . By:DS . Date:26:11:97 . Time:15:32 LOP8M. V8.0. Page 01:01
Codes: 2419 Signs: 1400 . Length: 45 pic 0 pts, 190 mm

Remark. It is well-known (see [3] for example) that the inverse
theorems of the rational approximation theory follow from the Bernstein-
type inequalities and some standard techniques of the interpolation space
theory.

In particular, the inverse parts of Peller's and Pekarskii's approximation
theorems [8, 9] are immediate corollaries of Theorems 2 and 3.

3.3. Transfer to the Segment

One can transfer the results of Section 3.2 from the disc D to the segment
I=[&1, 1] of he real line using the Faber operator techniques [4, 5].

Theorem 2$. For any rational function r of degree n with poles out-
side I

&r&B s
p(I )�Cns &r&Lq(I ) .

Here, as before, p>0, q�1,

s=
1
q

&
1
p

>0,

and C is a constant not depending on n.

Theorem 3$. For any rational function r of degree n with poles outside
I and any p>0

&r&Bp
1�p(I )�Cn1�p &r&BMO(I ) .

For the sake of simplicity we expose here only the proof of Theorem 3$.

Proof. Use the Faber operators constructed in [4, 5].
Let f # BMO(I). Define the Faber transform Tf of f as

Tf (z)=
1

2? |
2?

0
f (cos t)

eit dt
eit&z

, z # D.

This is an analytic function in the unit disc. Since the change of variable
t � cos t preserves BMO space [7, Chap. 6, Corollary 1.3], we have

&Tf &BMOA�C & f &BMO(I) .

The operator T is one-to-one correspondence between BMO(I) and
BMOA. For any rational function r with poles outside I its transform Tr
is a rational function of the same degree with poles outside D.
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It is proved in [4, 5] that f # B1�p
p (I ) if and only if Tf # B1�p

p (T) and

&TF&B p
1�p(T)

�� & f &Bp
1�p(I ) .

Thus, the operator T is an isomorphism in the whole scale B1�p
p .

Now for a rational r Theorem 3 asserts that

&Tr&B p
1�p(T)�Cn1�p &Tr&BMOA.

The last estimate proves the theorem. K

Remark. Another Faber operator, constructed in [4, 5] as well, provides
an isomorphism between Bs

p(I ) and the subspace of analytic functions in
Bs

p(T). For q fixed and

1
q

=s+
1
p

,

this isomorphism does not depend on p and is an isomorphism between
Lq(I ) and the Hardy space H q(D). Therefore, one can repeat the proof
above to prove Theorem 2$ too.

4. ESTIMATES IN AREA NORM

4.1. An Estimate Outside the Disc

Let r be a rational function of degree n with poles outside D.
Let B be a Blaschke product of degree n+2 with the same poles as r and

two additional poles at infinity. Consider the function

f (z)=
r(z)
B(z)

. (4.1)

This is a new rational function, analytic in C"D; f (�)=0.
On the unit circle | f | coincides with |r|. So, for example, all H p norms

of f and r (in D and C"D, respectively) are the same. We intend to obtain
a result of this kind for area L p norms, when one cannot use boundary
values.

Theorem 4. For any p�2

\|C"D

| f (z)| p dx dy+
1�p

�Cp n1�2 \|D

|r(z)| p dx dy+
1�p

, (4.2)

where the constant Cp depends on p only.
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Remark. The factor n1�2 is sharp for p=2. One can check this on poly-
nomials r(z)=zn. The sharp exponent for p>2 is unknown.

Proof. It suffices to prove that for any continuous function . of compact
support in C"D

} |C"D

f (`) .(`) d! d' }�Cpn1�2 &r&Lp(D) &.&Lp$(C"D) , (4.3)

where p$= p�( p&1) is the dual exponent.
Consider the function

g(z)=&
1

2?i |C"D

.(`)
`&z

d! d'.

This function is analytic in D� , and by the Green formula,

|
C"D

f (`) .(`) d! d'=|
T

f (z) g(z) dz

=|
T

r(z) g(z) B(z) dz=2i |
D

rg
�B�
�z�

dx dy.

In the case p>2 the Hardy�Littlewood�Sobolev fractional integration
theorem [11, Chap. 5, Theorem 1 of Sect. 1] gives

&g&Lq(R2)�Cp &.&Lp$ , (4.4)

where

1
q

=
1
p$

&
1
2

=
1
2

&
1
p

.

Therefore, due to the Ho� lder inequality,

} |C"D

f (`) .(`) d! d' }�Cp |
D

|r| | g| |B$| dx dy

�Cp \|D

|r| p+
1�p

\|D

| g|q+
1�q

\|D

|B$| 2+
1�2

�Cpn1�2 &r&Lp(D) &.&Lp$(C"D) .

The last inequality follows from (4.4) and the Lemma of Section 2.1.
Thus, the estimate (4.3) for the case p>2 is proved.
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The Hardy�Littlewood�Sobolev theorem fails for q=� [11, Chap. 5,
Sect. 1.2]. The constant Cp in (4.4), and so in (4.2), tends to infinity as
p � 2. Nevertheless, there is another way to prove the theorem for p=2.

By a well-known result [11, Chap. 2, Theorem 3 of Sect. 4.2]

&{g&L2(R2)�C &.&L2(R2) ,

and, therefore [11, Chap. 6, Sect. 4.3], the following estimate holds:

&g |T&B
2
1�2(T)�C &.&L2(R2) .

According to Section 1.3, there exists a special decomposition (1.1) for g;

g |T =v+h | T , v # L�(T), h # BMOA,

satisfying the estimate

&v&B
2
1�2(T)+&v&L�(T)+&h |T &B

2
1�2(T)�C &g |T &B

2
1�2(T) .

Proving the key estimate (4.3) as before one obtains

|
C"D

f (`) .(`) d! d'=|
T

f (z) g(z) dz

=|
T

f (z) v(z) dz=|
T

r(z) v(z) B(z) dz

(the contribution of h vanishes by analyticity).
Define the function V as the Poisson integral of v with respect to D. This

is a harmonic function in D, bounded by the same constant as v, and [11,
Chap. 5, Prop. 7$ and Sect. 5.1]

&{V&L2(D)�C &v&B
2
1�2�C &.&L2(R2) .

Now we can finish the estimate as

|
T

r(z) v(z) B(z) dz

=2i |
D

r(z) B(z)
�V
�z�

dx dy+2i |
D

r(z) V(z) B$(z) dx dx. (3.5)

However,

} |D

rB�
�V
�z� }�\| |r| 2+

1�2

\| |{V| 2+
1�2

�C &r&L2(D) &.&L2(R2) ,
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and

} |D

rVB$ }�\| |r| 2+
1�2

&v&� \|D

|B$| 2+
1�2

�Cn1�2 &r&L2(D) &.&L2(R2) . K

The set C"U (see (3.2)) is a ``hyperbolic neighborhood'' of the pole set
of r.

Corollary 4. For any p�2

|
U

|r| p�Cp n p�2 |
D

|r| p.

4.2. Application: An Inversion of the Sobolev Embedding Theorem

The following embedding theorem for Sobolev classes is well-known [11,
Chap. 5, Theorem 2 of Sect. 2.2]:

W 1
q(D)/L p(D), 2�p<�,

1
q

=
1
p

+
1
2

.

It turns out that this embedding admits a complete inversion for rational
functions of a given degree.

Theorem 5. Let r be a rational function of degree n with poles outside
D. For any p, 2<p<�,

&r&Wq
1(D)�Cpn &r&Lp(D) .

Remarks. (i) The estimate &r&W 1
1
�C(n)&r&L2 fails. A true analogue of

the theorem in L2 is not known yet.

(ii) Probably, the multiplier n is not sharp. We conjecture that the
sharp exponent is 1�2, and the estimate must be true with the multiplier
n1�2.

Proof. Consider the extension B� of the Blaschke product B from
Section 2.3 and define an extension of the function r by the formula

r~ (z)= f (z) B� (z), z # C"D.

Here the function f is defined in (4.1).
The function r~ is compactly supported and analytic outside the level set

E*. On E*, due to (2.4),

}�r~
�z� }=| f (z)| } �B�

�z� }�C
| f (z)|
|z|&1

.
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By the Cauchy�Green formula

r$(z)=&
1

? |
E*

�r~

� �̀

d! d'

(`&z)2
, z # D.

According to Calderon�Zygmund estimate in the plane [11, Chap. 2,
Theorem 3 of Sect. 4.2]

&r$&Lq(D)�Cq "�r~

� �̀ " Lq(E*)

.

Corollary 2 asserts that

E*/ .
N

k=1

2k ,

where 2k are Whitney discs and N�Cn. Therefore,

|
E* }

�r~

� �̀ }
q

�C |
� 2k

| f | q 1

( |`|&1)q

�C \|� 2k

| f | p+
q�p

\|� 2k

1
( |`|&1) pq�( p&q)+

1&q�p

.

Theorem 4 gives an estimate for the first factor. It does not exceed
Cnq�2 &r&q

Lp(D) .
In the second factor the exponent pq�( p&q) equals 2, and the contribu-

tion of each 2k to the integral does not exceed an absolute constant. So the
whole integral is less than CN, and we obtain the inequality

"�r~

� �̀ "Lq(E*)

�Cpn &r&Lp(D) . K

4.3. A New Inverse Theorem of the Rational Approximation Theory

Theorem 5 is an inequality of the Bernstein type for rational functions.
As usual [3] it leads to the corresponding inverse theorem of the approxi-
mation theory.

In order to obtain such a result we need a slightly different version of the
Bernstein inequality.

Theorem 5$. Let r be a rational function of degree n with poles outside
D. Let 2<p<� and 0<q<p�2. Then

&r&B s
q(T)�Cn1�2+1�q&1�p &r&Lp(D) ,
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where

s=
1
q

&
2
p

.

Proof. Consider the same extension r~ of r as in the proof of Theorem 5
and apply the estimate (1.2). In this case the function _ of (1.3) is supported
on the level set [z : |B(z)|�5�4] due to the remark at the end of Section 2.1.
So the domain of integration in (1.2) is contained in a union of not more than
Cn Whitney's discs 2k . Now by the Ho� lder inequality

|
1<|z| <2

_(z)q dx dy
( |z|&1)qs+1

�\| _(z) p dx dy+
q�p

\|� 2k

dx dy
( |z|&1)(qs+1) p�( p&q)+

1&q�p

�Cn1&q�p \| _ p+
q�p

,

because

(qs+1)
p

p&q
=2.

However, due to the mean value theorem and to (4.2),

&_&Lp(C"D)�C & f &Lp(C"D)�Cn1�2 &r&Lp(D) .

Thus,

&r&Bs
q(T)�Cn1�2+1�q&1�p &r&Lp(D) . K

According to the general theory of approximation space [3, Corollary 1 on
p. 129] Theorem 5$ implies the following inverse theorem of the rational
approximation theory.

Let 2<p<�. For any function f, analytic in D, such that f # L p(D),
define its best rational approximation in the L p norm,

Rn( f )p=inf & f&r&Lp(D) , n=1, 2, ...,

where inf is taken over all rational functions r of degree n with poles outside D.
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Theorem 6. For any q, 0<q<p�2, if f # L p(D) is analytic and

� nq(1�2&1�p)Rn( f )q
p<�,

then

f # B1�q&2�p
q (T).

Proof. Choose two different exponents q1 and q2 , 0<q1<q<q2<p�2.
Then by Theorem 5$

&r&B si
qi
�Cin:i &r&Lp(D) , i=1, 2.

Here

si=
1
qi

&
2
p

, :i=
1
2

+
1
qi

&
1
p

,

and r is an arbitrary rational function of degree n with poles outside D.
Therefore Corollary 1 on page 129 in [3] asserts that for any t, 0<t<1,

if

:
�

n=1

1
n

[n:tRn( f )]q<�,

then

f # [Bs1
q1

, Bs2
q2

]tq ,

where

:t=(1&t) :1+t:2 ,

and [X1 , X2]tq denotes the corresponding real interpolation space between
(quasi)-Banach spaces X1 and X2 .

Choosing t so that

1
q

=
1&t
q1

+
t

q2

,

and taking into account that [3]

[Bs1
q1

, Bs2
q2

]tq=Bs
q ,
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where

s=(1&t) s1+ts2=
1
q

&
2
p

,

one obtains the desired result. K
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